URFinder allows you to simultaneously investigate relationships between the nodes of a system and also between the different states the nodes can be in. URFinder achieves this by allowing you to search for relationship parameters U and R (on the node repertoire and set of nodes of the system respectively) that minimise the expected float entropy (efe) of the system. The software also allows you to collect observations of efe, under choosing U and R uniformly at random, in order to plot efe-histograms. You can copy and paste the results tables into Microsoft Excel. URFinder is freeware and the author is happy to distribute the source code. However, the author asks that if users want to release modified versions then they should indicate their modifications in the help pages. URFinder was written during research that resulted in the paper “Quasi-Conscious Multivariate Systems”.
*These instructions include an example for you to try.
.
T node1 node2 node3 node4 node5 S1 147.224 147.224 0 147.224 0 S2 147.224 147.224 147.224 0 147.224 S3 0 0 0 147.224 0 S4 147.224 147.224 294.449 147.224 147.224 S5 441.673 441.673 441.673 294.449 294.449 S6 147.224 147.224 294.449 294.449 294.449 S7 147.224 294.449 294.449 147.224 147.224 S8 294.449 294.449 294.449 294.449 294.449 S9 294.449 294.449 147.224 294.449 294.449 S10 294.449 294.449 294.449 294.449 294.449 S11 147.224 147.224 147.224 0 0 S12 147.224 147.224 0 0 147.224 S13 294.449 294.449 294.449 294.449 294.449 S14 294.449 294.449 294.449 294.449 294.449 S15 147.224 294.449 294.449 147.224 147.224 S16 147.224 294.449 294.449 294.449 147.224 S17 441.673 441.673 294.449 294.449 294.449 S18 294.449 294.449 294.449 294.449 294.449 S19 147.224 147.224 0 0 0 S20 147.224 147.224 147.224 147.224 294.449 S21 441.673 294.449 147.224 294.449 294.449 S22 147.224 147.224 0 147.224 147.224 S23 147.224 147.224 294.449 294.449 294.449 S24 294.449 147.224 147.224 441.673 294.449 S25 0 147.224 294.449 147.224 147.224 S26 441.673 441.673 441.673 441.673 441.673 S27 441.673 294.449 441.673 147.224 0 S28 441.673 441.673 147.224 441.673 441.673 S29 147.224 0 0 147.224 294.449 S30 294.449 294.449 294.449 294.449 441.673 S31 294.449 441.673 441.673 294.449 441.673 S32 294.449 0 0 294.449 0 S33 147.224 147.224 147.224 147.224 147.224 S34 147.224 147.224 0 0 0 S35 147.224 147.224 441.673 441.673 441.673 S36 294.449 294.449 294.449 294.449 294.449 S37 294.449 294.449 147.224 294.449 294.449 S38 147.224 147.224 147.224 147.224 147.224 S39 441.673 294.449 294.449 441.673 294.449 S40 294.449 294.449 294.449 294.449 294.449 S41 294.449 294.449 441.673 294.449 294.449 S42 294.449 441.673 441.673 441.673 441.673 S43 294.449 294.449 294.449 294.449 294.449 S44 147.224 0 147.224 147.224 0 S45 147.224 294.449 294.449 0 294.449 S46 147.224 294.449 294.449 294.449 147.224 S47 0 0 147.224 0 0 S48 294.449 294.449 147.224 441.673 147.224 S49 294.449 441.673 441.673 294.449 294.449 S50 294.449 147.224 147.224 441.673 441.673 S51 294.449 294.449 294.449 294.449 294.449 S52 147.224 0 0 0 0 S53 147.224 294.449 294.449 294.449 294.449 S54 0 147.224 441.673 441.673 147.224 S55 294.449 441.673 294.449 294.449 294.449 S56 0 0 147.224 147.224 147.224 S57 147.224 294.449 294.449 294.449 294.449 S58 147.224 147.224 147.224 147.224 147.224 S59 0 294.449 294.449 0 294.449 S60 147.224 147.224 147.224 147.224 147.224 S61 294.449 294.449 294.449 294.449 294.449 S62 147.224 147.224 147.224 147.224 147.224 S63 0 294.449 0 0 0 S64 294.449 294.449 147.224 147.224 147.224 S65 147.224 294.449 294.449 294.449 294.449 S66 147.224 147.224 147.224 147.224 147.224 S67 147.224 294.449 147.224 294.449 294.449 S68 0 0 441.673 0 0 S69 147.224 294.449 294.449 147.224 294.449 S70 0 0 147.224 0 0 S71 294.449 294.449 294.449 147.224 294.449 S72 147.224 294.449 147.224 147.224 147.224 S73 147.224 294.449 294.449 294.449 294.449 S74 294.449 294.449 294.449 147.224 294.449 S75 147.224 147.224 147.224 294.449 147.224 S76 147.224 147.224 147.224 441.673 441.673 S77 147.224 294.449 294.449 147.224 147.224 S78 294.449 294.449 441.673 294.449 294.449 S79 0 147.224 147.224 0 147.224 S80 441.673 441.673 441.673 441.673 441.673 S81 294.449 294.449 147.224 294.449 294.449 S82 294.449 441.673 0 441.673 294.449 S83 0 147.224 147.224 147.224 147.224 S84 147.224 147.224 0 147.224 147.224 S85 441.673 147.224 294.449 441.673 147.224 S86 441.673 441.673 441.673 441.673 441.673 S87 147.224 294.449 294.449 147.224 147.224 S88 147.224 294.449 147.224 441.673 441.673 S89 441.673 441.673 441.673 441.673 441.673 S90 147.224 147.224 147.224 147.224 147.224 S91 294.449 294.449 294.449 294.449 294.449 S92 147.224 0 147.224 0 147.224 S93 294.449 294.449 441.673 294.449 294.449 S94 294.449 294.449 294.449 294.449 294.449 S95 147.224 147.224 147.224 147.224 147.224 S96 147.224 147.224 147.224 147.224 147.224 S97 147.224 147.224 147.224 147.224 147.224 S98 147.224 294.449 147.224 147.224 294.449 S99 294.449 294.449 294.449 294.449 441.673 S100 441.673 294.449 294.449 294.449 294.449 S101 0 0 0 0 0 S102 0 147.224 147.224 147.224 147.224 S103 441.673 294.449 294.449 441.673 441.673 S104 0 294.449 294.449 0 441.673 S105 441.673 147.224 147.224 294.449 294.449 S106 294.449 294.449 441.673 441.673 441.673 S107 294.449 294.449 441.673 294.449 294.449 S108 294.449 294.449 294.449 294.449 441.673 S109 441.673 294.449 147.224 441.673 294.449 S110 0 0 0 0 0 S111 147.224 147.224 147.224 147.224 147.224 S112 441.673 294.449 294.449 441.673 294.449 S113 294.449 147.224 147.224 294.449 147.224 S114 0 0 0 0 0 S115 294.449 441.673 294.449 294.449 294.449 S116 147.224 147.224 294.449 294.449 147.224 S117 294.449 147.224 147.224 294.449 294.449 S118 0 0 0 0 0 S119 147.224 147.224 147.224 147.224 147.224 S120 0 0 0 0 0 S121 147.224 147.224 147.224 147.224 147.224 S122 147.224 147.224 0 441.673 147.224 S123 294.449 147.224 147.224 294.449 294.449 S124 294.449 294.449 294.449 294.449 294.449 S125 294.449 294.449 294.449 294.449 294.449 S126 441.673 294.449 294.449 147.224 147.224 S127 294.449 294.449 294.449 147.224 294.449 S128 294.449 294.449 0 441.673 294.449 S129 441.673 441.673 294.449 294.449 441.673 S130 147.224 147.224 147.224 441.673 294.449 S131 294.449 294.449 147.224 294.449 294.449 S132 294.449 294.449 147.224 294.449 147.224 S133 147.224 441.673 294.449 147.224 294.449 S134 147.224 147.224 294.449 147.224 147.224 S135 147.224 294.449 147.224 147.224 441.673 S136 441.673 147.224 147.224 294.449 147.224 S137 147.224 147.224 147.224 147.224 147.224 S138 441.673 294.449 294.449 294.449 294.449 S139 147.224 294.449 294.449 147.224 294.449 S140 441.673 441.673 294.449 294.449 294.449 S141 294.449 294.449 294.449 294.449 294.449 S142 0 294.449 0 147.224 294.449 S143 147.224 147.224 147.224 294.449 147.224 S144 294.449 294.449 294.449 294.449 294.449 S145 0 0 0 147.224 147.224 S146 441.673 441.673 294.449 441.673 441.673 S147 147.224 0 147.224 294.449 0 S148 147.224 0 147.224 0 0 S149 294.449 441.673 147.224 441.673 147.224 S150 294.449 147.224 147.224 294.449 147.224 S151 294.449 294.449 294.449 294.449 294.449 S152 441.673 441.673 294.449 441.673 441.673 S153 147.224 294.449 441.673 147.224 441.673 S154 147.224 147.224 294.449 147.224 147.224 S155 441.673 147.224 441.673 441.673 0 S156 294.449 294.449 294.449 294.449 147.224 S157 294.449 294.449 147.224 147.224 294.449 S158 0 0 0 0 0 S159 0 147.224 441.673 0 147.224 S160 0 147.224 294.449 147.224 294.449 S161 147.224 441.673 441.673 147.224 147.224 S162 147.224 294.449 441.673 147.224 294.449 S163 441.673 0 294.449 441.673 0 S164 147.224 294.449 294.449 294.449 294.449 S165 147.224 147.224 147.224 294.449 147.224 S166 294.449 294.449 147.224 294.449 294.449 S167 147.224 147.224 147.224 147.224 0 S168 441.673 441.673 294.449 441.673 294.449 S169 294.449 294.449 441.673 147.224 294.449 S170 0 0 147.224 147.224 147.224 S171 294.449 441.673 441.673 441.673 441.673 S172 0 147.224 294.449 294.449 294.449 S173 0 147.224 0 0 147.224 S174 0 147.224 294.449 147.224 0 S175 294.449 294.449 294.449 294.449 294.449 S176 441.673 441.673 294.449 441.673 294.449 S177 294.449 294.449 294.449 441.673 294.449 S178 147.224 147.224 147.224 147.224 147.224 S179 0 147.224 294.449 147.224 294.449 S180 294.449 0 294.449 147.224 294.449 S181 147.224 147.224 147.224 147.224 147.224 S182 294.449 147.224 147.224 147.224 147.224 S183 294.449 441.673 441.673 294.449 294.449 S184 0 147.224 294.449 294.449 294.449 S185 294.449 294.449 441.673 294.449 294.449 S186 441.673 441.673 441.673 441.673 441.673 S187 294.449 294.449 147.224 441.673 441.673 S188 147.224 294.449 0 294.449 294.449 S189 147.224 147.224 147.224 147.224 147.224 S190 441.673 0 0 147.224 441.673 S191 147.224 0 147.224 0 0 S192 0 0 0 0 147.224 S193 294.449 294.449 294.449 147.224 294.449 S194 147.224 147.224 441.673 294.449 147.224 S195 147.224 147.224 147.224 147.224 147.224 S196 294.449 294.449 294.449 294.449 294.449 S197 441.673 441.673 0 441.673 441.673 S198 147.224 147.224 147.224 0 147.224 S199 294.449 294.449 294.449 294.449 441.673 S200 294.449 294.449 294.449 294.449 294.449
.
U 0 147.224 294.449 441.673 0 1 0.3046875 0.0546875 0.0078125 147.224 0.3046875 1 0.4140625 0.1015625 294.449 0.0546875 0.4140625 1 0.3359375 441.673 0.0078125 0.1015625 0.3359375 1 U 0 147.224 294.449 441.673 0 1 0.125:0.375 0.125:0.375 0.125:0.375 147.224 0.125:0.375 1 0.125:0.375 0.125:0.375 294.449 0.125:0.375 0.125:0.375 1 0.125:0.375 441.673 0.125:0.375 0.125:0.375 0.125:0.375 1
.
R node1 node2 node3 node4 node5 node1 1 0.9921875 0.6171875 0.9140625 0.7890625 node2 0.9921875 1 0.9453125 0.7578125 0.9296875 node3 0.6171875 0.9453125 1 0.7421875 0.8828125 node4 0.9140625 0.7578125 0.7421875 1 0.9765625 node5 0.7890625 0.9296875 0.8828125 0.9765625 1 R node1 node2 node3 node4 node5 node1 1 0.625:0.875 0.625:0.875 0.625:0.875 0.625:0.875 node2 0.625:0.875 1 0.625:0.875 0.625:0.875 0.625:0.875 node3 0.625:0.875 0.625:0.875 1 0.625:0.875 0.625:0.875 node4 0.625:0.875 0.625:0.875 0.625:0.875 1 0.625:0.875 node5 0.625:0.875 0.625:0.875 0.625:0.875 0.625:0.875 1
fe(R,U,S_i):=log_2(#{S_j in Omega_S,V : d_n(R,R(U,S_j))<=d_n(R,R(U,S_i))}),
where Omega_S,V is the set of all possible data elements that a system, with set of nodes S and node repertoire V, can have; e.g. for #S=5, #V=4 we have #Omega_S,V=4^5=1024. The float entropy of a data element is a measure of the amount of information required (in addition to that given by R and U) in order to specify that data element; the unit of measure is bits. When using this mode the metric d_n needs to be specified in order to give a distance between the weighted relations as matrices; by default n=1 but other allowed values are 2,3,4, and "infinity". The value 1 specifies the Manhattan metric (giving the L_1 distance), 2 specifies the Euclidian metric, 3 and 4 give the L_3 and L_4 distances respectively, and infinity gives the Supremum metric..