Generalising Uniform Algebras Over Complete Valued Fields

Jonathan Mason

School of Mathematical Sciences
University of Nottingham

May 20th 2010

Updated 2011
We begin with the following definition.

Definition 1.0

Let F be a complete valued field.
Let A be a commutative unital Banach F-algebra.
We say that A has **finite basic dimension** if there exists a finite extension L of F extending F as a valued field such that:

(i) for each proper closed prime ideal J of A, that is the kernel of a bounded multiplicative seminorm on A, $\text{Frac}(A/J)$ is F-isomorphic to a subfield of L;

(ii) there is $g \in \text{Gal}(L/F)$ with $L^g = F$, where $L^g := \{x \in L : g(x) = x\}$.

Representation of uniform algebras, overview.

Let F be \mathbb{C}

let A be a commutative unital Banach F-algebra with $\|a^2\| = \|a\|^2$ for all $a \in A$ and finite basic dimension.

A is a complex uniform algebra on a compact Hausdorff space,
Representation of uniform algebras, overview.

Let F be \mathbb{C} or \mathbb{R}

let A be a commutative unital Banach F-algebra with

$\|a^2\| = \|a\|^2$ for all $a \in A$ and finite basic dimension.

A is a complex uniform algebra

or A is a real function algebra

on a compact Hausdorff space,

Hausdorff space,
Representation of uniform algebras, overview.

Let F be \mathbb{C} or \mathbb{R} or \mathbb{K}, a locally compact complete nonarchimedean field, let A be a commutative unital Banach F-algebra with $\|a^2\| = \|a\|^2$ for all $a \in A$ and finite basic dimension.

- A is a complex uniform algebra on a compact Hausdorff space,
- or A is a real function algebra on a compact Hausdorff space,
- or A is a nonarchimedean analog of the real function algebras on a Stone space.

Note, here a Stone space is a totally disconnected compact Hausdorff space.
Definition 1.1

Let F and L be complete valued fields such that L is an extension of F as a valued field. Let X be a compact Hausdorff space and let $C_L(X)$ be the Banach algebra of all continuous L-valued functions on X with pointwise operations and the sup norm. If a subset A of $C_L(X)$ satisfies:

(i) A is closed under pointwise operations;

(ii) A is complete with respect to $\| \cdot \|_\infty$;

(iii) $F \subset A$;

(iv) A separates the points of X,

then we will call A an L/F uniform algebra or just a uniform algebra when convenient.
Definition 1.1

Let F and L be complete valued fields such that L is an extension of F as a valued field. Let X be a compact Hausdorff space and let $C_L(X)$ be the Banach algebra of all continuous L-valued functions on X with pointwise operations and the sup norm. If a subset A of $C_L(X)$ satisfies:

(i) A is closed under pointwise operations;
(ii) A is complete with respect to $\| \cdot \|_\infty$;
(iii) $F \subset A$;
(iv) A separates the points of X,

then we will call A an L/F uniform algebra or just a uniform algebra when convenient.

In the language of Definition 1.1, an L/F uniform algebra is a Banach F-algebra of L-valued functions.
We now generalise two definitions by Kulkarni and Limaye from the theory of real function algebras.
We now generalise two definitions by Kulkarni and Limaye from the theory of real function algebras.

Definition 1.2 (J. Mason 2009)

Let F and L be complete valued fields such that L is a finite extension of F as a valued field. Let X be a compact Hausdorff space and totally disconnected if F is nonarchimedean. Define,

$$C(X, \tau, g) := \{ f \in C_L(X) : f(\tau(x)) = g(f(x)) \text{ for all } x \in X \}$$

where:

(i) $g \in \text{Gal}(L/F)$;

(ii) $\tau : X \to X$ with $\text{ord}(\tau) | \text{ord}(g)$;

(iii) g and τ are continuous.

We will call $C(X, \tau, g)$ the **basic L/L^g function algebra** on (X, τ, g), where $L^g := \{ x \in L : g(x) = x \}$, or just a **basic function algebra** when convenient.
Definition 1.3 (J. Mason 2009)

Let F and L be complete valued fields such that L is a finite extension of F as a valued field. Let (X, τ, g) conform to the conditions of Definition 1.2 and let A be a subset of the basic L/L_g function algebra on (X, τ, g).

If A is also an L/L_g uniform algebra then we will call A an L/L_g function algebra on (X, τ, g).
Definition 1.3 (J. Mason 2009)

Let F and L be complete valued fields such that L is a finite extension of F as a valued field. Let (X, τ, g) conform to the conditions of Definition 1.2 and let A be a subset of the basic L/L_g function algebra on (X, τ, g).

If A is also an L/L_g uniform algebra then we will call A an L/L_g function algebra on (X, τ, g).

Theorem 1.4

With respect to the above definitions the basic L/L_g function algebra on (X, τ, g) is always an L/L_g uniform algebra.
Definition 1.3 (J. Mason 2009)

Let F and L be complete valued fields such that L is a finite extension of F as a valued field. Let (X, τ, g) conform to the conditions of Definition 1.2 and let A be a subset of the basic L/L^g function algebra on (X, τ, g).

If A is also an L/L^g uniform algebra then we will call A an L/L^g function algebra on (X, τ, g).

Theorem 1.4

With respect to the above definitions the basic L/L^g function algebra on (X, τ, g) is always an L/L^g uniform algebra.

Note, in fact $\text{ord}(\tau)|\text{ord}(g)$ is an optimum condition in Definition 1.2 since if we do not include it in Definition 1.2 then $C(X, \tau, g)$ separates the points of X if and only if $\text{ord}(\tau)|\text{ord}(g)$.
Archimedean examples.
Archimedean examples.

(Ex1) Let $F = \mathbb{R}$, $L = \mathbb{C}$ and X be a compact Hausdorff space. We have $\text{Gal}(\mathbb{C}/\mathbb{R}) = \{ \text{id}, \bar{z} \}$.

Setting $g = \text{id}$ forces τ to be the identity on X. In this case $C(X, \tau, g) = C_{\mathbb{C}}(X)$ and each $L^/_{L^g}$ function algebra on (X, τ, g) is a complex uniform algebra.
Archimedean examples.

(Ex1) Let $F = \mathbb{R}$, $L = \mathbb{C}$ and X be a compact Hausdorff space. We have $\text{Gal}(\mathbb{C}/\mathbb{R}) = \{\text{id}, \bar{z}\}$.

Setting $g = \text{id}$ forces τ to be the identity on X. In this case $C(X, \tau, g) = C_\mathbb{C}(X)$ and each L/L_s function algebra on (X, τ, g) is a complex uniform algebra.

On the other hand, setting $g = \bar{z}$ forces τ to be a topological involution on X. In this case the L/L_s function algebras on (X, τ, g) are precisely the real function algebras of Kulkarni and Limaye.
Nonarchimedean examples.
Nonarchimedean examples.

(Ex2) Let $F = \mathbb{Q}_5$, $L = \mathbb{Q}_5(\sqrt{2})$ with the unique extension of the 5-adic valuation and $X := \{x \in L : |x|_L \leq 1\}$.

Let g be the Galois automorphism that sends $\sqrt{2}$ to $-\sqrt{2}$. Here g is an isometry on L and so we can take $\tau = g$. In this case $C(X, \tau, g)$ has the property that every power series in $C(X, \tau, g)$ has \mathbb{Q}_5 valued coefficients. However, since $X \subset \mathbb{Q}_5(\sqrt{2})$ these power series are $\mathbb{Q}_5(\sqrt{2})$ valued functions.
(Ex3) Let F, L, X and g be as in Ex2.

We can obtain a function $\omega : L \to \mathbb{Z} \cup \{+\infty\}$ such that for all $x \in L$ we have $|x|_L = 5^{-\omega(x)}$.

Define $\tau(0) = 0$ and for $x \in X \setminus \{0\}$,

$$
\tau(x) := \begin{cases}
5x & \text{if } 2 \mid \omega(x) \\
5^{-1}x & \text{if } 2 \nmid \omega(x).
\end{cases}
$$

In this case the only power series in $C(X, \tau, g)$ are constants belonging to \mathbb{Q}_5.
(Ex3) Let F, L, X and g be as in Ex2.

We can obtain a function $\omega : L \to \mathbb{Z} \cup \{+\infty\}$ such that for all $x \in L$ we have $|x|_L = 5^{-\omega(x)}$.

Define $\tau(0) = 0$ and for $x \in X \setminus \{0\}$,

$$
\tau(x) := \begin{cases}
5x & \text{if } 2 \mid \omega(x) \\
5^{-1}x & \text{if } 2 \nmid \omega(x).
\end{cases}
$$

In this case the only power series in $C(X, \tau, g)$ are constants belonging to \mathbb{Q}_5.

However there are elements of $C(X, \tau, g)$ that when restricted to a circle in X about the origin, can be expressed as a power series on the circle.
Before introducing the next theorem we recall the definition below.

Definition 1.0

Let F be a complete valued field. Let A be a commutative unital Banach F-algebra. We say that A has **finite basic dimension** if there exists a finite extension L of F extending F as a valued field such that:

(i) for each proper closed prime ideal J of A, that is the kernel of a bounded multiplicative seminorm on A, Frac(A/J) is F-isomorphic to a subfield of L;

(ii) there is $g \in \text{Gal}(L/F)$ with $L^g = F$, where $L^g := \{x \in L : g(x) = x\}$.
We have the following representation result.
We have the following representation result.

Theorem 1.5 (J. Mason 2010)

Let F be a locally compact complete nonarchimedean valued field with nontrivial valuation.
Let A be a commutative unital Banach F-algebra with $\|a^2\| = \|a\|^2$ for all $a \in A$ and finite basic dimension.
Then:

(i) for some finite extension L of F extending F as a valued field, a character space $\mathcal{M}(A)$ of L valued, multiplicative F-linear functionals can be defined;

(ii) the space $\mathcal{M}(A)$ is a totally disconnected compact Hausdorff space;

(iii) A is isometrically F-isomorphic to a L/F function algebra on $(\mathcal{M}(A), g, g)$ for some $g \in \text{Gal}(L/F)$.
Residue algebra theorem.
Residue algebra theorem.

Theorem 1.6 (J. Mason 2010)

Let F be a locally compact complete nonarchimedean valued field of characteristic zero with nontrivial valuation. Let L be a finite unramified extension of F with $L^g = F$ for some $g \in \text{Gal}(L/F)$ and let $C(X, \tau, g)$ be a basic L/F function algebra. Then:

(i) $\mathcal{O} := \{f \in C(X, \tau, g) : \|f\|_\infty \leq 1\}$ is a ring;

(ii) $\mathcal{J} := \{f \in C(X, \tau, g) : \|f\|_\infty < 1\}$ is an ideal of \mathcal{O};

(iii) $\mathcal{O}/\mathcal{J} \cong C(X, \tau, \bar{g})$ where $C(X, \tau, \bar{g})$ is the basic \bar{L}/\bar{F} function algebra on (X, τ, \bar{g}). Here \bar{F} and \bar{L} are respectively the residue fields of F and L whilst \bar{g} is the residue automorphism on \bar{L} induced by g.
(Q1) An open question. Wermer gave the following theorem in 1963.

Theorem

Let X be a compact Hausdorff space, $A \subseteq \mathbb{C}(X)$ a complex uniform algebra and $\text{Re}A := \{ \text{Re} f : f = \text{Re}f + i\text{Im}f \in A \}$. If $\text{Re}A$ is a ring then $A = \mathbb{C}(X)$.

An analog of Wermer’s theorem for real function algebras was given by Kulkarni and Srinivasan in 1990.

Theorem

Let X be a compact Hausdorff space, τ a topological involution on X and A a \mathbb{C}/\mathbb{R} function algebra on (X, τ, \bar{z}). If $\text{Re}A$ is a ring then $A = \mathbb{C}(X, \tau, \bar{z})$.

Can this be generalised further for $\mathbb{C}(X, \tau, g)$?
(Q1) An open question. Wermer gave the following theorem in 1963.

Theorem

Let X be a compact Hausdorff space, $A \subseteq C(X)$ a complex uniform algebra and $\text{Re}A := \{\text{Re} f = \text{Re} f + i\text{Im} f \in A\}$. If $\text{Re}A$ is a ring then $A = C(X)$.

An analog of Wermer's theorem for real function algebras was given by Kulkarni and Srinivasan in 1990.
(Q1) An open question. Wermer gave the following theorem in 1963.

Theorem

Let X be a compact Hausdorff space, $A \subseteq C(X)$ a complex uniform algebra and $\text{Re}A := \{\text{Re}f : f = \text{Re}f + i\text{Im}f \in A\}$. If $\text{Re}A$ is a ring then $A = C(X)$.

An analog of Wermer’s theorem for real function algebras was given by Kulkarni and Srinivasan in 1990.
(Q1) An open question. Wermer gave the following theorem in 1963.

Theorem

Let X be a compact Hausdorff space, $A \subseteq C(X)$ a complex uniform algebra and $\text{Re}A := \{\text{Re}f : f = \text{Re}f + i\text{Im}f \in A\}$. If $\text{Re}A$ is a ring then $A = C(X)$.

An analog of Wermer’s theorem for real function algebras was given by Kulkarni and Srinivasan in 1990.

Theorem

Let X be a compact Hausdorff space, τ a topological involution on X and A a \mathbb{C}/\mathbb{R} function algebra on (X, τ, \bar{z}). If $\text{Re}A$ is a ring then $A = C(X, \tau, \bar{z})$.
(Q1) An open question. Wermer gave the following theorem in 1963.

Theorem

Let X be a compact Hausdorff space, $A \subseteq C(X)$ a complex uniform algebra and $\text{Re}A := \{\text{Ref} : f = \text{Ref} + i\text{Im}f \in A\}$. If $\text{Re}A$ is a ring then $A = C(X)$.

An analog of Wermer’s theorem for real function algebras was given by Kulkarni and Srinivasan in 1990.

Theorem

Let X be a compact Hausdorff space, τ a topological involution on X and A a \mathbb{C}/\mathbb{R} function algebra on (X, τ, \bar{z}). If $\text{Re}A$ is a ring then $A = C(X, \tau, \bar{z})$.

Can this be generalised further for $C(X, \tau, g)$?
(Q2) For $f \in C_L(X)$ define $\sigma(f) := g^{\text{ord}(g)-1} \circ f \circ \tau$.
We have $f \in C(X, \tau, g)$ if and only if $\sigma(f) = f$.
Does every higher order algebraic involution on $C_L(X)$ has the form σ for some g and τ?
Aside, for g an isometry on L we automatically have that σ is an isometry on $C_L(X)$.
For $f \in C_L(X)$ define $\sigma(f) := g^{\text{ord}(g)-1} \circ f \circ \tau$.
We have $f \in C(X, \tau, g)$ if and only if $\sigma(f) = f$.
Does every higher order algebraic involution on $C_L(X)$ have the form σ for some g and τ?
Aside, for g an isometry on L we automatically have that σ is an isometry on $C_L(X)$.

There are many open questions.
References:

(1) V. G. Berkovich, Spectral theory and analytic geometry over nonarchimedean fields, Mathematical surveys and monographs, no. 33, American Mathematical Society, 1990.

We will end here.
We begin with some elementary p-adic analysis to reveal some striking differences with complex analysis.
We begin with some elementary p-adic analysis to reveal some striking differences with complex analysis.

Definition

Let K be a field. A **nonarchimedean** absolute value on K is a function $|·| : K \rightarrow \mathbb{R}$ such that for any $a, b \in K$ we have:

1. $|a| \geq 0$ with $|a| = 0$ if and only if $a = 0$,
2. $|ab| = |a| \cdot |b|$,
3. $|a + b| \leq \max\{|a|, |b|\}$, strong triangle inequality.

If K is complete with respect to the metric obtained from $|·|$ then K is called nonarchimedean.

More generally, a metric space (X, d) is called an ultrametric space if the metric d satisfies the strong triangle inequality, $d(x, z) \leq \max\{d(x, y), d(y, z)\}$.
We begin with some elementary p-adic analysis to reveal some striking differences with complex analysis.

Definition

Let K be a field. A **nonarchimedean** absolute value on K is a function $|\cdot| : K \to \mathbb{R}$ such that for any $a, b \in K$ we have:

(i) $|a| \geq 0$ with $|a| = 0$ if and only if $a = 0$,

(ii) $|ab| = |a| \cdot |b|$,

(iii) $|a + b| \leq \max\{ |a|, |b| \}$, strong triangle inequality.

If K is complete with respect to the metric obtained from $|\cdot|$ then K is called nonarchimedean.

More generally, a metric space (X, d) is called an **ultrametric space** if the metric d satisfies the strong triangle inequality, $d(x, z) \leq \max\{ d(x, y), d(y, z) \}$.
We begin with some elementary p-adic analysis to reveal some striking differences with complex analysis.

Definition

Let K be a field. A **nonarchimedean** absolute value on K is a function $|\cdot| : K \to \mathbb{R}$ such that for any $a, b \in K$ we have:

1. $|a| \geq 0$ with $|a| = 0$ if and only if $a = 0$,
2. $|ab| = |a| \cdot |b|$,
We begin with some elementary p-adic analysis to reveal some striking differences with complex analysis.

Definition

Let K be a field. A **nonarchimedean** absolute value on K is a function $|\cdot| : K \to \mathbb{R}$ such that for any $a, b \in K$ we have:

1. $|a| \geq 0$ with $|a| = 0$ if and only if $a = 0$,
2. $|ab| = |a| \cdot |b|$,
3. $|a + b| \leq \max\{|a|, |b|\}$, strong triangle inequality.
We begin with some elementary p-adic analysis to reveal some striking differences with complex analysis.

Definition

Let K be a field. A **nonarchimedean** absolute value on K is a function $|·|: K \rightarrow \mathbb{R}$ such that for any $a, b \in K$ we have:

(i) $|a| \geq 0$ with $|a| = 0$ if and only if $a = 0$,

(ii) $|ab| = |a| \cdot |b|$,

(iii) $|a + b| \leq \max\{|a|, |b|\}$, strong triangle inequality.

If K is complete with respect to the metric obtained from $|·|$ then K is called **nonarchimedean**.
We begin with some elementary p-adic analysis to reveal some striking differences with complex analysis.

Definition

Let K be a field. A **nonarchimedean** absolute value on K is a function $|\cdot| : K \to \mathbb{R}$ such that for any $a, b \in K$ we have:

(i) $|a| \geq 0$ with $|a| = 0$ if and only if $a = 0$,

(ii) $|ab| = |a| \cdot |b|$,

(iii) $|a + b| \leq \max\{|a|, |b|\}$, strong triangle inequality.

If K is complete with respect to the metric obtained from $|\cdot|$ then K is called **nonarchimedean**.

More generally, a metric space (X, d) is called an **ultrametric space** if the metric d satisfies the strong triangle inequality,

$$d(x, z) \leq \max\{d(x, y), d(y, z)\}.$$
For each prime \(p \in \mathbb{N} \) there is a nonarchimedean absolute value \(| \cdot |_p\) on the field of rational numbers \(\mathbb{Q} \). The completion of \(\mathbb{Q} \) obtained using \(| \cdot |_p\) is the nonarchimedean field \(\mathbb{Q}_p \) of p-adic numbers.
For each prime $p \in \mathbb{N}$ there is a nonarchimedean absolute value $| \cdot |_p$ on the field of rational numbers \mathbb{Q}. The completion of \mathbb{Q} obtained using $| \cdot |_p$ is the nonarchimedean field \mathbb{Q}_p of p-adic numbers.

Each $x \in \mathbb{Q}_p^\times$ has a unique p-power series expansion of the form

$$x = \sum_{i \leq n} a_n p^n, \quad a_n \in \{0, \cdots, p - 1\}, \quad a_i \neq 0, \quad i \in \mathbb{Z}.$$

The absolute value of $x \neq 0$ is then $|x|_p = p^{-i}$ and $|0|_p = 0$.
For each prime $p \in \mathbb{N}$ there is a nonarchimedean absolute value $|\cdot|_p$ on the field of rational numbers \mathbb{Q}. The completion of \mathbb{Q} obtained using $|\cdot|_p$ is the nonarchimedean field \mathbb{Q}_p of p-adic numbers.

Each $x \in \mathbb{Q}_p^\times$ has a unique p-power series expansion of the form

$$x = \sum_{i \leq n} a_n p^n, \quad a_n \in \{0, \cdots, p - 1\}, \quad a_i \neq 0, \quad i \in \mathbb{Z}.$$

The absolute value of $x \neq 0$ is then $|x|_p = p^{-i}$ and $|0|_p = 0$.

The completion of the algebraic closure of \mathbb{Q}_p is denoted \mathbb{C}_p and is fortunately algebraically closed. \mathbb{C}_p is a nonarchimedean field extending \mathbb{Q}_p.
For each prime $p \in \mathbb{N}$ there is a nonarchimedean absolute value $|\cdot|_p$ on the field of rational numbers \mathbb{Q}. The completion of \mathbb{Q} obtained using $|\cdot|_p$ is the nonarchimedean field \mathbb{Q}_p of p-adic numbers.

Each $x \in \mathbb{Q}_p^\times$ has a unique p-power series expansion of the form

$$x = \sum_{i \leq n} a_n p^n, \quad a_n \in \{0, \cdots, p-1\}, \quad a_i \neq 0, \quad i \in \mathbb{Z}. $$

The absolute value of $x \neq 0$ is then $|x|_p = p^{-i}$ and $|0|_p = 0$.

The completion of the algebraic closure of \mathbb{Q}_p is denoted \mathbb{C}_p and is fortunately algebraically closed. \mathbb{C}_p is a nonarchimedean field extending \mathbb{Q}_p.

\mathbb{Q}_p is locally compact where as \mathbb{C}_p is not. Further \mathbb{C}_p and \mathbb{C} are isomorphic, $\mathbb{C}_p \cong \mathbb{C}$ as fields.
p-adic balls in $\mathbb{K} := \mathbb{Q}_p$ or \mathbb{C}_p.

Let $r \in \mathbb{R}$, $r > 0$ and let \leq be one of $<$ or \leq on \mathbb{R}.

Overview Definitions Examples Theorems Open Questions References Extra
p-adic balls in \(\mathbb{K} := \mathbb{Q}_p \) or \(\mathbb{C}_p \).

Let \(r \in \mathbb{R}, r > 0 \) and let \(\leq \) be one of \(<\) or \(\leq\) on \(\mathbb{R} \).

Then \(x \sim y :\iff |x - y|_p \leq r \) is an equivalence relation on \(\mathbb{K} \) by the strong triangle inequality. To show transitivity, let \(x \sim y \) and \(y \sim z \) then,

\[
|x - z|_p = |x - y + y - z|_p \leq \max\{|x - y|_p, |y - z|_p\} \leq r \quad \text{so} \quad x \sim z.
\]
p-adic balls in $\mathbb{K} := \mathbb{Q}_p$ or \mathbb{C}_p.

Let $r \in \mathbb{R}$, $r > 0$ and let \leq be one of $<$ or \leq on \mathbb{R}.

Then $x \sim y$:\(\iff\) $|x - y|_p \leq r$ is an equivalence relation on \mathbb{K} by the strong triangle inequality. To show transitivity, let $x \sim y$ and $y \sim z$ then,

$$
|x - z|_p = |x - y + y - z|_p \leq \max\{|x - y|_p, |y - z|_p\} \leq r \quad \text{so} \quad x \sim z.
$$

(a) Hence every \mathbb{K} ball $B_r(x)$ is an equivalence class and so every point in $B_r(x)$ is at it’s center because every element is an equivalence class representative. Hence every \mathbb{K} ball is open.
p-adic balls in $\mathbb{K} := \mathbb{Q}_p$ or \mathbb{C}_p.

Let $r \in \mathbb{R}, r > 0$ and let \leq be one of $<$ or \leq on \mathbb{R}.

Then $x \sim y :\Leftrightarrow |x - y|_p \leq r$ is an equivalence relation on \mathbb{K} by the strong triangle inequality. To show transitivity, let $x \sim y$ and $y \sim z$ then,

$$|x - z|_p = |x - y + y - z|_p \leq \max\{|x - y|_p, |y - z|_p\} \leq r \text{ so } x \sim z.$$

(a) Hence every \mathbb{K} ball $B_r(x)$ is an equivalence class and so every point in $B_r(x)$ is at it’s center because every element is an equivalence class representative. Hence every \mathbb{K} ball is open.

(b) Algebraically, $\mathbb{K}/_\sim := \{B_r(x) : x \in \mathbb{K}\}$ is an Abelian group.
p-adic balls in \(K := \mathbb{Q}_p \) or \(\mathbb{C}_p \).

Let \(r \in \mathbb{R}, \ r > 0 \) and let \(\leq \) be one of \(< \) or \(\leq \) on \(\mathbb{R} \).

Then \(x \sim y :\Leftrightarrow |x - y|_p \leq r \) is an equivalence relation on \(K \) by the strong triangle inequality. To show transitivity, let \(x \sim y \) and \(y \sim z \) then,

\[
|x - z|_p = |x - y + y - z|_p \leq \max\{|x - y|_p, |y - z|_p\} \leq r \quad \text{so} \quad x \sim z.
\]

(a) Hence every \(K \) ball \(B_r(x) \) is an equivalence class and so every point in \(B_r(x) \) is at it’s center because every element is an equivalence class representative. Hence every \(K \) ball is open.

(b) Algebraically, \(K/\sim := \{B_r(x) : x \in K\} \) is an Abelian group.

(c) Since \(K \) is a disjoint union of \(\sim \) equivalence classes, \(K \) is a disjoint union of balls of radius \(r \).
p-adic balls in $\mathbb{K} := \mathbb{Q}_p$ or \mathbb{C}_p.

Let $r \in \mathbb{R}$, $r > 0$ and let \leq be one of $<$ or \leq on \mathbb{R}.

Then $x \sim y :\Leftrightarrow |x - y|_p \leq r$ is an equivalence relation on \mathbb{K} by the strong triangle inequality. To show transitivity, let $x \sim y$ and $y \sim z$ then,

$$|x - z|_p = |x - y + y - z|_p \leq \max\{|x - y|_p, |y - z|_p\} \leq r$$

so $x \sim z$.

(a) Hence every \mathbb{K} ball $B_r(x)$ is an equivalence class and so every point in $B_r(x)$ is at its center because every element is an equivalence class representative. Hence every \mathbb{K} ball is open.

(b) Algebraically, $\mathbb{K}/\sim := \{B_r(x) : x \in \mathbb{K}\}$ is an Abelian group.

(c) Since \mathbb{K} is a disjoint union of \sim equivalence classes, \mathbb{K} is a disjoint union of balls of radius r.

(d) It follows easily that for $y \notin B_r(x)$ we have $B_r(y) \cap B_r(x) = \emptyset$. Hence, also noting (a), every \mathbb{K} ball is clopen.
(e) Also from (c) for any two balls $B_{r_1}(x)$ and $B_{r_2}(y)$, either they are disjoint or one is a subset of the other.
(e) Also from (c) for any two balls $B_{r_1}(x)$ and $B_{r_2}(y)$, either they are disjoint or one is a subset of the other.

(f) Hence all nonempty Swiss Cheese sets in \mathbb{K} are classical.
(e) Also from (c) for any two balls $B_{r_1}(x)$ and $B_{r_2}(y)$, either they are disjoint or one is a subset of the other.

(f) Hence all nonempty Swiss Cheese sets in \mathbb{K} are classical.

(g) \mathbb{K} is totally disconnected.
 To see this note that for all $r > 0$ and for all $x \in \mathbb{K}$, $\mathbb{K} = (\mathbb{K} \setminus B_r(x)) \cup B_r(x)$ is a disjoint union of open sets since $B_r(x)$ is clopen. Since this is true for all $r > 0$, $\{x\}$ is the largest connected component containing x.
(e) Also from (c) for any two balls $B_{r_1}(x)$ and $B_{r_2}(y)$, either they are disjoint or one is a subset of the other.

(f) Hence all nonempty Swiss Cheese sets in \mathbb{K} are classical.

(g) \mathbb{K} is totally disconnected.
To see this note that for all $r > 0$ and for all $x \in \mathbb{K}$,
$\mathbb{K} = (\mathbb{K} \setminus B_r(x)) \cup B_r(x)$ is a disjoint union of open sets since $B_r(x)$ is clopen. Since this is true for all $r > 0$, $\{x\}$ is the largest connected component containing x.

From these elementary results we already see that p-adic analysis and complex analysis are very different. As a further example, it follows from (g) that there are no arcs or paths from $[0, 1]$ to \mathbb{K}, or in fact to any ultrametric space.
Theorem (Combined Stone-Weierstrass theorem)

Let $K \in \{\mathbb{R}, \mathbb{C}, \mathbb{Q}_p, \mathbb{C}_p\}$ and let X be a non-empty compact subset of K. Let $(A, \| \cdot \|_\infty)$ be a Banach K-subalgebra of $C_K(X)$ satisfying:

(i) A includes each element of K as a constant function,
(ii) A separates the points of X,
(iii) And, if $K = \mathbb{C}$, A is self adjoint i.e. $f \in A \iff \overline{f} \in A$,

Then $A = C_K(X)$.
Theorem (Combined Stone-Weierstrass theorem)

Let $K \in \{\mathbb{R}, \mathbb{C}, \mathbb{Q}_p, \mathbb{C}_p\}$ and let X be a non-empty compact subset of K. Let $(A, \| \cdot \|_\infty)$ be a Banach K-subalgebra of $C_K(X)$ satisfying:

(i) A includes each element of K as a constant function,

(ii) A separates the points of X,

(iii) And, if $K = \mathbb{C}$, A is self adjoint i.e. $f \in A \iff \overline{f} \in A$,

Then $A = C_K(X)$.

Hence, for $K = \mathbb{Q}_p$ or \mathbb{C}_p, $C_K(X)$ has no nontrivial proper subalgebras, as in the case with $K = \mathbb{R}$.